生物发光的进化时间可能比科学家此前认为的早了 3 亿年

生物发光的进化时间可能比科学家此前认为的早了 3 亿年

许多海洋生物(包括海虫、一些水母、海泡菜等)都可以通过一种称为生物发光的过程发出空灵的光芒。这种发光的进化起源仍然是个谜,但一个国际科学家小组发现,生物发光可能最早在至少 5.4 亿年前的一种名为八放珊瑚的海洋无脊椎动物中进化而来——比他们之前认为的早了近 3 亿年。这个新的时间表可以帮助科学家解开生物发光的起源故事。4 月 23 日发表在《皇家学会学报 B》上的一项研究中详细介绍了这一发现。

什么是生物发光?

发光生物通过化学反应产生光。这种能力在自然界中至少独立进化了 94 次。生物发光与多种动物行为有关,包括交流、求爱、伪装和狩猎。萤火虫、萤火虫,甚至陆地上的某些真菌物种也被认为是发光生物。

“没有人确切知道它为何首先在动物中进化,”研究报告的共同作者、史密森尼自然历史博物馆珊瑚馆长安德里亚·夸特里尼 (Andrea Quattrini) 在一份声明中说道。

2009 年,分枝竹八放珊瑚Isidella在巴哈马群岛展示生物发光。图片来源:Sönke Johnsen。

人们曾认为,动物中最早出现生物发光的例子是大约 2.67 亿年前的小型海洋甲壳类动物,这种动物以充满粘液的同步交配舞蹈而闻名,被称为介形虫,直到这项新研究才使时光倒流。

八放珊瑚进化树

在这项研究中,研究小组回顾了八放珊瑚的进化史,以寻找这种现象首次出现在动物身上的线索。八放珊瑚是一种古老且经常发光的生物群落,包括海扇、海笔和软珊瑚。就像硬珊瑚一样,八放珊瑚是构成珊瑚礁结构的微小群体息肉,但它们主要是软体而不是石质。发光的八放珊瑚通常在受到撞击或其他干扰时会发光。据该团队称,这使得它们发光能力的确切功能有点令人费解

[相关:这些新发现的生物发光海虫以日本民间传说命名。]

“我们想弄清楚生物发光的起源时间,八放珊瑚是地球上已知的最古老的生物发光动物群之一,”研究合著者、史密森尼国家自然历史博物馆博士后学者丹尼尔·德利奥在一份声明中说。“那么,问题是它们什么时候发展出这种能力的?”

他们转向了 2022 年构建的八放珊瑚详细进化树。这张进化关系图(或系统发育图)使用了 185 种不同八放珊瑚物种的基因数据。然后,该团队根据其物理特征将两块已知年龄的八放珊瑚化石放入进化树中。他们能够利用化石的年龄及其在进化树中的各自位置大致确定八放珊瑚谱系何时分裂成两个或更多分支。该团队最终绘制出了所有已知的现存发光生物物种的进化关系。

太平洋中部的竹珊瑚和金珊瑚。图片来源:NOAA 海洋探索与研究办公室。

利用这棵进化树和包含标记的生物发光物种的分支,研究小组使用一种称为祖先状态重建的统计技术来分析物种之间的关系。

“如果我们知道现存的八放珊瑚物种具有生物发光性,我们就可以利用统计数据推断它们的祖先是否具有生物发光性,”夸特里尼说。“具有共同特征的现存物种越多,随着时间的推移,这些祖先也具有这种特征的可能性就越大。”

多种统计方法都得出了相同的结论,大约 5.4 亿年前,所有八放珊瑚的共同祖先很可能都具有生物发光性,这比之前被认为是动物界最早生物发光进化例子的介形虫类甲壳动物早了约 2.73 亿年。

研究小组称,八放珊瑚有数千种现存物种,而且生物发光的发生率相对较高,这表明发光在该群体的进化成功中发挥了一定作用。虽然这并不能准确解释八放珊瑚使用生物发光的原因,但这种现象已经存在了很长时间,这表明这种交流方式对它们的生存有多么重要。

保护意义

现在,研究小组知道所有八放珊瑚的共同祖先可能已经能够发出自己的内部光亮,他们有兴趣更彻底地统计该群体中已知的 3,000 多种生物中哪些仍然具有生物发光性,哪些随着时间的推移失去了这种特性。这可能会让他们确定一组与生物发光相关的生态环境,并可能揭示其功能。

蒙特利湾水族馆研究所 (MBARI) 的遥控潜水器 Doc Ricketts 在现场拍摄了毛茸茸的竹八放珊瑚 Isidella tentaculum 的生物发光展示。图片来源:版权所有 2020 MBARI

该团队还在开发一种基因测试,以确定八放珊瑚物种是否具有荧光素酶基因的功能性副本——荧光素酶是一种与生物发光有关的酶。未来的研究甚至可能表明,生物发光甚至更古老,并深深植根于珊瑚的进化史中。

[相关:惊喜!这些海参会发光。]

这项研究还指出了进化方面的见解,有助于监测和管理当今海洋中的八放珊瑚。它们目前受到矿产开采、捕鱼、石油和天然气开采和泄漏以及人为气候变化的威胁。

美国国家海洋和大气管理局 (NOAA) 最近证实,由于海洋温度不断升高导致的热应力,地球目前正在经历有记录以来的第四次全球珊瑚白化事件,也是过去 10 年中的第二次。八放珊瑚在极端温度下会像硬珊瑚一样白化。更多地了解它们如何使用生物发光可以帮助科学家更好地识别它们的栖息地并监测它们的行为。更好地了解它们的基因和生存所需的条件也可以为这些海洋生物制定更好的保护政策。

<<:  地球你好!NASA 可以再次了解旅行者 1 号

>>:  美国宇航局将在微波炉大小的立方体内展开一面 860 平方英尺的太阳帆

推荐阅读

为什么美国可能会发现更多不明飞行物

截至 2 月份,美国已击落了 4 个飞越领空的物体。第一个是一只气球,据追踪,它来自中华人民共和国,...

《极限之心》的魅力与评价:体育与偶像的新领域

极限之心:未来体育与音乐交织的成长故事《极限之心》是一部于2022年7月10日至9月25日播出的电视...

#TBT 回顾 1947 年:宝丽来相机问世

本故事最初发表于 PopPhoto.com。今天,我们将带您回到 1947 年,聆听《大众科学》杂志...

《Potekko Babies》的魅力与评价:不容错过的可爱冒险

Potecco Babies - 治愈系土豆护林员创造的轻松世界概述《Potecco Babies》...

2009 年度最佳新品:年度 100 项最伟大创新

创新表现形式多种多样:突破性的、革命性的突破,我们以前从未想象过,或者对现有技术进行更细微但同样出色...

美国宇航局的詹姆斯·韦伯望远镜正在展开一个超薄的防护罩,以保护它免受太阳的照射

詹姆斯·韦伯太空望远镜 (JWST) 正在忙着拆解,隆重地进驻距离地球约 93 万英里(150 万公...

我是一只狗:全面评估堂·松五郎的一生

《我是狗:松五郎堂的人生》——独特的单集动画的魅力1983年2月9日播出的电视动画《我是狗:松五郎堂...

气候变化可能会让这种默默无闻的小牡蛎重回餐桌

一群奥林匹亚牡蛎。图片由 Matthew Gray (CC BY-SA 2.0) 提供太平洋牡蛎可以...

死鲸和恐龙蛋:研究人员拍摄的 7 张迷人图片

哦,科学家们在野外看到了许多奇迹。记录这些遭遇是发现过程不可或缺的一部分,但它也可以吸引其他人参与其...

观看首个固体原子与液体互动的视频

现在是夏天,天气很热,这些原子正在游泳。材料科学家首次记录了单个固体原子在液体溶液中的移动。英国曼彻...

哆啦 A 梦第 2 集评论:朝日电视台版第一季的吸引力何在?

哆啦 A 梦 - 朝日电视台系列第一季的魅力和历史■ 公共媒体电视动画系列■ 原创媒体漫画■ 播出时...

新年新优惠——Microsoft Visual Studio Pro 现正降价!(30 美元)

又发生了。你一直盯着屏幕,感觉好像永远都盯着,确信代码中的错误正在玩捉迷藏。你已经尝试了书上的所有技...

激光和 3D 打印让 New Balance 的新款运动鞋焕发活力

看看新百伦周五推出的一款名为 FuelCell Echo Triple 的新型跑鞋,你会发现前脚掌(...

利比亚叛军 DIY 武器工坊内部

本周末,利比亚执政党全国过渡委员会领导人穆斯塔法·阿卜杜勒·贾利勒宣布该国正式“解放”。经过八个月的...