即使在壳和子宫内,胚胎也在倾听

即使在壳和子宫内,胚胎也在倾听

50 多年前,研究人员发现,鸡在孵化前就开始学习母鸡的叫声。该研究结果于 1967 年发表在《科学》杂志上,表明鸡胚胎以某种方式聆听外界的声音,并解释和存储这些信息。

而且不仅仅是鸡胚胎。根据一篇新评论论文,许多动物胚胎在受精卵或子宫内都能感知外部声音和振动。

“真正令人惊讶的是,胚胎使用声音的现象如此普遍,”这项研究的首席作者、澳大利亚吉朗迪肯大学的行为生态学家 Mylene Mariette 说道。“胚胎并不像我们想象的那样与外界隔绝。”

这项新研究发表在《生态学和进化趋势》杂志上,研究了整个动物界,从昆虫到两栖动物再到哺乳动物,它们似乎在“产前”(出生或孵化前)就能感知到声音或振动,并做出某种反应。玛丽埃特说,对声音的一种常见反应是策略性地协调、延迟或加速卵的孵化。“所有产卵的动物似乎都在这样做。”

例如,臭虫利用从卵中孵化出来的兄弟姐妹的声音来协调同时孵化,而树蛙则会对接近的捕食者发出的声音作出反应而提前孵化。

但最初让玛丽埃特对这个话题产生兴趣的例子来自她自己对斑胸草雀的研究。这种小型群居鸟类适应了澳大利亚中部沙漠地区的生活。为了在炎热的环境中降温,斑胸草雀会像狗一样喘气,发出可听见的“热呼声”——天气越热,喘气声就越频繁。

这是 Mylene Mariette 录制的斑胸草雀发情叫声。

在 2016 年的一项研究中,玛丽埃特发现父母频繁发出的求爱声似乎向雀类胚胎发出信号,表明它们将在特别炎热的季节来到这个世界。这些蛋在父母的屁股下的温度控制环境中孵化,无法独立检测外界温度,因此求爱声为未孵化的幼鸟提供了原本未知的信息。这些新数据似乎转化为长期的发育变化;在接触求爱声后孵化的斑胸草雀幼鸟具有不同的特征,例如生长速度较慢,这使它们更适合在高温下生活。

将声音转化为物理变化的关键在于幼鸟的基因。“任何持续并改变发育的生物变化都会涉及基因表达的变化,”克莱姆森大学分子生物学家和神经科学家大卫·克莱顿 (David Clayton) 说,他研究成年鸟类的基因表达变化,也是这篇综述研究的作者之一。

这些基因表达的调整也被称为表观遗传变化。在表观遗传变化中,实际的 DNA 代码保持不变,但通过改变 DNA 转化为蛋白质的程度,这些基因的影响要么被放大,要么被抑制。实际上,蛋白质才是基因功能的执行者,因此,如果将 DNA 转录成蛋白质的分子(中间有一些步骤)停止,基因就会被有效地打开或关闭。

胚胎如何感知声音的问题更为复杂。研究人员为哺乳动物和鸟类等动物提供了一种可能性。尽管耳朵和大脑中解释声音的部分在胚胎中尚未完全形成,但其他正在发育的大脑区域,如杏仁核(与情绪有关),可以在无意识的声音检测和解释中发挥作用。然而,并非所有大脑都是一样的。例如,伊利诺伊大学香槟分校的行为生态学家马克·豪伯 (Mark Hauber) 表示,昆虫的大脑没有杏仁核,结构也完全不同,他在 2018 年撰写了一篇仅关注鸟类的相关评论研究。

[相关:这只荧光海龟胚胎是今年最迷人的微小物体照片之一]

此前该领域的研究主要集中在鸟类和人类身上,因为人类和鸟类都具有学习声音的能力。但 Hauber 表示,这项新研究表明,“听觉比学习更重要。”如果胚胎能够感知声音,它就能做出反应。

这种能力意味着胚胎即使在以卵子形式产下后也能持续与环境互动,使它们能够适应快速变化,而无需与父母建立生理联系。“它们可以了解环境的最新情况,”玛丽埃特说,“无论是热浪还是捕食者,这为它们提供了更多信息,以根据特定条件调整发育。”

对于哺乳动物和其他在体内孕育幼崽的动物来说,胚胎解读声音的能力可以与内部线索(如母体应激激素水平)相结合,将特定噪音与环境联系起来,马里埃特说。例如,如果怀孕的老鼠和里面的胚胎都听到了某种声音,并且怀孕的老鼠应激激素水平上升,胚胎可能会开始知道这种声音表示有威胁。

不过,除了单个动物的发育之外,胚胎对声音信号的反应可能会使某些物种(如斑胸草雀)比之前预期的更能适应气候变化等快速的环境变化,马里埃特说。这也可能意味着噪音污染可能比之前认为的更加有害。研究已经表明,交通噪音等噪音污染会增加动物的压力,阻碍它们在幼年和成年时的交流能力,从而对动物造成伤害,但这种干扰过程可能更早开始——在受精卵或子宫中。

最后,这项新研究对发育生物学中关于先天与后天的长期观念提出了挑战。科尔盖特大学的神经科学家刘王春说,以前人们普遍认为动物生来就具有某些先天性状。但如果动物从胚胎时期就开始对环境作出反应,那么一些先天行为实际上可能是外部条件的产物。“如果这个结果真的一致,我认为这可能会对我们如何看待什么是先天行为,什么是后天行为产生很大的影响,”刘说。

尽管玛丽埃特更关注研究更多声音线索的机会而不是这个迫在眉睫的大问题,但她表示,“当我们思考胚胎可以从声音中获取的所有信息时,它极大地改变了我们对胚胎发育的看法。”

<<:  一场野火如何掀起 45,000 英尺高的火柱

>>:  巴黎为应对气候变化做了什么(以及没有做什么)

推荐阅读

这位科学家认为他找到了所有性能量的来源

本周你学到的最奇怪的事情是什么?好吧,不管是什么,我们保证如果你听PopSci的热门播客,你会得到一...

你可能需要每年读几十本书才能抵消新电子阅读器带来的损失

商业电子书(或电子书)于 20 世纪 90 年代末首次推出,随着电子书的普及,人们很容易认为纸质书将...

这艘古老的“母舰”用探测“手指”在海底搜寻猎物

5 亿多年前,一种外形奇异的巨型无脊椎动物在现今不列颠哥伦比亚的泥泞海底游荡。它身长半米(约 1.6...

《瞄准王牌!》的魅力与评价:网球激情与青春的故事

瞄准王牌!电影——一部关于青春辉煌与失败的戏剧瞄准王牌!于1979年9月8日上映,电影版《你的名字》...

恐狼实际上是冰河时代的巨型狐狸

当你想象一只可怕的狼时,脑海中浮现的形象可能是《权力的游戏》中栖息在临冬城的那些毛茸茸但又令人恐惧的...

如果大肠杆菌变得更大,它会做什么?

生活在你体内的细菌群落的作用不只是帮助你消化食物。根据弗吉尼亚理工大学研究人员创建的模型,细菌可以像...

《丽塔和其他什么人》的魅力与评价:独特的人物与故事的深度

丽塔和其他东西——儿童动画的魅力和深刻寓意《丽塔和某某》于2010年11月1日至12月24日在NHK...

首批超级高铁乘客刚刚经历了短暂但重要的旅程

11 月 8 日星期日,两名乘客坐在内华达州一条管道内的吊舱内,被迅速送至 1300 英尺外。测试开...

报告:特斯拉致命车祸不能归咎于软件错误

“自动紧急制动 (AEB) 或自动驾驶系统可能无法按设计运行,从而增加发生事故的风险。”这句话很简...

麻省理工学院的新型机器人根据你的肌肉指令

想象一下,你和朋友一起搬沙发。你们两个站在相反的位置,需要沟通何时搬动沙发。你可以数到三就搬动,或者...

LinkedIn 最近的社交研究揭示了什么有助于人们找到工作

LinkedIn 可能被认为是一个相对无趣的社交网络——一个挤满了佩戴挂绳的人们的社交欢乐时光的虚拟...

在两个气球之间发送 372 英里的无线数据需要很好的瞄准

根据你居住的地方,你很容易将手机信号塔的快速、可靠的数据连接视为理所当然。但当然,并不是世界上每个人...

《Kaba Tot》的魅力与评价:不容错过的动漫体验

Kabatotto - 怀旧短篇动画的魅力和完整故事概述Kabatotto 是一部由 Tatsuno...

“什么是幸福?”评论:一部充满感动泪水和笑容的动漫

“什么是幸福?” - 感人且发人深省的 OVA 1991年7月9日发售的OVA《幸福是什么?》是一部...

五大湖未受破坏的“荒野”只是幻觉

以下是戴夫·登普西 (Dave Dempsey) 所著《半野生:人、狗和环境政策》的摘录。那是 19...