近一个世纪前,当科学家发明了第一台电子显微镜时,这段旅程就开始了,而现在,它又迈出了新的一步。 一组物理学家已经更接近科学家认为的物体放大倍数的极限。该小组之前保持着显微镜最高分辨率的世界纪录。他们发表在《科学》杂志上的最新研究成果进一步缩小了这一纪录。 康奈尔大学物理学家、论文作者之一戴维·穆勒 (David Muller) 表示:“这是人类历史上分辨率最高的成像。” 使用你在学校里用过的显微镜,你根本无法获得如此高的分辨率。这些显微镜(比如罗伯特·胡克 300 多年前用来观察隐藏的细胞世界的显微镜)只能看到光。这意味着它们无法看到任何小于光波长的东西。这是一个硬性限制,比看到原子大一千倍。 科学家们早在 20 世纪初就遇到了这个障碍。如果你想要研究更小的物体——例如进入病毒的世界,开发脊髓灰质炎疫苗——你需要用波长比光更短的介质来观察。 你可能会想到电子,即围绕原子核旋转的微小带电粒子。20 世纪 30 年代,恩斯特·鲁斯卡等科学家开始制造第一台电子显微镜,这种显微镜可以通过电子束探测微小物体,清晰地显示它们的细节。 [相关:Oppo 在其新旗舰智能手机中安装了数码显微镜] 电子的波长比光短 10 万倍左右。理论上,你可以用它们来观察原子——所有正常物质的基本组成部分。但有一个问题,这不是电子的错。“电子透镜的镜头质量很差,”穆勒说。 许多天文学家都知道,没有一种成像系统是完美的。但电子显微镜内的电磁透镜特别模糊。穆勒说,通过典型的电子显微镜观察就像透过啤酒瓶看光一样。 解决这个问题的一种方法是安装一些称为“像差校正器”的硬件,就像为电子显微镜配一副眼镜一样。但要观察原子,你需要指挥像差校正器的交响乐。想象一下一百副不断移动的眼镜。 到了 20 世纪 90 年代和 21 世纪,计算机实际上已经实现了这一点,将显微镜分辨率推向了新的极限。一度,像差校正器占据了分辨率的王座。但到了 2010 年代,这项技术开始失去动力。 为了不断突破显微镜分辨率的极限,康奈尔大学的物理学家们选择了一条少有人走的路:他们彻底摒弃了透镜。相反,他们向物体发射电子,并观察电子如何散射。 当这些电子飞过时,物体的原子会将轰击的电子抛离轨道,使它们在物体的远端弯曲成图案。通过从多个位置向物体发射电子,你可以拍摄出一整张图案。使用当今的计算机,你可以将这些图案拼接在一起,重建原始物体的微观图像。 这种技术被称为叠层扫描技术(tai-KAW-graf-ee)。如今,X 射线科学家通常使用他们自己的叠层扫描技术,但对于电子观察者来说,这是一条死路。阿贡国家实验室的物理学家兼论文合著者 Yi Jiang 表示,科学家们在理论上讨论了电子叠层扫描技术半个世纪,但直到最近五年,它才真正成为现实。 首先,科学家过去没有能够精确定位足够多电子落点的探测器。其次,电子特别容易被抛向各种方向,即使是单个原子。即使使用现代计算机,这也很难解释。因此,在分辨率记录方面,像差校正器比叠层扫描技术领先一个数量级。 但康奈尔大学的研究小组相信叠层扫描技术很有前景。到 2010 年代中期,他们已经开发出最先进的电子探测器。为此,他们借鉴了 X 射线科学家的算法。他们还通过调低电子束并将物体厚度减小到尽可能小来简化问题。 2018 年,这一技术成功了。康奈尔大学的研究小组击败了像差校正器,实现了有史以来最高的显微镜分辨率,并因此获得了吉尼斯世界纪录。 [相关:6张明亮的生命显微图像] 当然,这不是万无一失的方法。“我们所能做的就是研究这些只有一个原子或两个原子厚的材料,”穆勒说。 但该团队想知道他们能否将粒子尺寸缩小到更小。他们有设备可以做到这一点,但他们需要计算机来解释电子令人讨厌的散射。从本质上讲,他们需要强行解决一个 80 年来一直未解的物理问题。 康奈尔团队花了三年时间研究算法——穆勒说,这三年的工作常常让人觉得毫无成果。但多亏了康奈尔博士后陈震的努力,他们找到了一种可行的方法。 结果呢?他们打破了自己保持的世界纪录,而且是原来的两倍。 阿贡国家实验室的计算科学家马修·约瑟夫·切鲁卡拉 (Matthew Joseph Cherukara) 表示:“这篇论文是一项里程碑式的研究,它展示了先进算法和计算在突破和超越显微镜物理限制方面的强大能力。”切鲁卡拉并未参与这篇论文的研究。 科学家还能走得更远吗? 这个问题的答案确实很模糊。 看看康奈尔团队的照片,你会发现原子看起来很模糊。这不是探测器的像差或空气的干扰。这是原子本身的颤动,在高温下振动。你可以冷却原子让它们保持原位,但通过用电子探测它们,你只会再次加热它们。 因此,据科学家所知,这种模糊是他们无法克服的,除非他们找到另一种完全观察原子的方式。 穆勒说道:“我们几乎已经到达了极限。” |
这个故事已更新。现在,我们大多数人都知道克里斯托弗·哥伦布是多么的不酷。越来越多的州将哥伦布日改为土...
弗诺·文奇,多产的科幻小说作家、教授,也是最早提出“技术奇点”和网络空间概念的著名思想家之一,于 7...
如需了解更多交易和产品信息,请查看我们的专属 Facebook 群组。...
《岸边露伴:告白》和《逃亡》综合评论与推荐概述《岸部露伴不动:告白室,奔跑》是根据荒木飞吕彦的人气漫...
社交隔离让我们这些待在家里的人有很多时间去思考——也许你一直在绞尽脑汁想办法帮助那些在疫情前线奋战的...
圣雄甘地曾说过:“活着就像明天就要死去一样。学习就像永远活着一样。”虽然我们知道这句话的真正意义,但...
奇怪的房子! - 嗯不! - 申诉与评估“奇怪的房子!”是一部两分钟的短动画电影,于 1983 年在...
雷少年与Pikata君的自行车课——回顾怀旧的OVA 1989年发行的原版动画影像(OVA)《雷少年...
在亚历克斯·加兰为《惊变 28 天》所写的剧本中,他设想了一个未来,一种人造的血液传播病毒将大部分人...
Rennyo 和他的母亲 - Rennyo 和 sono 哈哈■ 公共媒体剧院■ 原创媒体小说■ 发...
当周围水域温度升高一两度时,南极海床的水生生物会发生什么变化?研究人员花了六年时间开发了一种加热装置...
目前还没有标准的反无人机火箭筒,但五角大楼想要一个。使用士兵携带的设备阻止无人机的能力对于任何未来的...
周五下午 3 点左右,我从充电器上拔下了 MacBook Air M3。它重 2.7 磅,轻巧紧凑,...
卡尔与神秘塔 - 令人着迷的动画短片世界■作品概要《卡尔与不可思议的塔》是改编自寺田顺三的绘本的电视...
10 月 21 日,美国亚裔记者协会与新闻业退伍军人协会联合发布指导方针,敦促“新闻编辑室不要使用日...